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ABSTRACT

A review of several optimality criteria for the design of experiments

involving quantitative factors for the estimation of unknown papameters in

regression problems is given. These include rotatability, D-optimality and G-

optimality criteria. Designs are no longer optimal under these criteria when

conditions are suboptimal.

The two main lines of research in the robust design of experiments will

be discussed, i.e. (i) the comparison of the performance of an optimal design

with respect to a particular criterion under other criteria; (ii) the

construction of designs which guard against particular short comings.
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SIGNIFICANCE AND EXPLANATION

A review of several optimality criteria for the design of experiments

involving quantitative factors for the estimation of unknown parameters in

regression problems is given. These include: rotatability, the variance of

the estimated response at a particular point being a function of the distance

of the point from the center of the design; D-optimality, the minimization of

the generalized variance; and G-optimality, the minimization of the maximum

variance of the estimated response. Designs are no longer optimal under these

criteria when conditions are suboptimal; for example when the assumptions

about the model or the region do not hold, some observations are missing, or

some observations are outliers and need to be set aside.

The two main lines of research in the robust design of experiments are

discussed, i.e. (i) the comparison of the performance of an optimal design

with respect to a particular criterion under other criteria; (ii) the

construction of designs which quard against particular short comings. Robust

designs will be slightly less than optimal under ideal conditions but will be

more efficient under more realistic conditions.
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THE ROBUST DESIGN OF EXPERIMENTS: A REVIEW

Agnes M. Herzberg
t

1. Introduction

The term robust was introduced into statistics by Box (1953) with regard

to statistical tests being valid when some of the assumptions did not hold.

Since 1953, there has been a large proliferation of papers on the subject of

robustness. Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1972) state.

'Estimation is the art of inferring information
about some unknown quantity on the basis of available
data. Typically an estimator of some sort is used. The
estimator is chosen to perform well under conditions that
are assumed to underly the data. Since these conditions
are never known exactly, the estimators must be chosen
which are robust, which perform well under a variety of
underlying conditions.

The theory of robust estimation is based on the
specified properties of specified estimators under
specified conditions.'

One wants to determine the interactions of these.

There are broadly two senses in which robust is used in the design of

experiments. The first is that after one has obtained an optimal design

relative to a particular criterion one examines how well the design performs

in other respects; see, for example, Xiefer (1975), Galil and Xiefer (1977

a,b) and Kiefer and Studden (1976). If there is still some freedom in the

construction of the design, one can incorporate further subsidiary optimality

requirementsi see Herzberg and Cox (1972). The other sense is the

construction of designs which guard against particular short comingsl see, for

example, Box and Draper (1975) and Herzberg and Andrews (1976). These robust
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designs will be slightly less than optimal under ideal conditions but will be

more efficient under more realistic conditions.

Hedayat and John (1974) and John (1976) have discussed robustness for

balanced incomplete block designs. Although very important, this work will

not be discussed here.

2. General Comments

The design of experiments involving quantitative factors has been

extensively investigated, two main lines of work being that on response

surfaces and that on general studies of optimality in designs for estimating

regression coefficients; see for example, Box and Wilson (1951), Box and

Hunter (1957) and Box and Draper (1959) for the first and Klfving (1952),

Chernoff (1953), Kiefer (1959, 1961, 1962) and Kiefer and Wolfowitz (1959) for

the second.

It is well known that caution is necessary in formulating these

problems. There are three aspects of primary importance:

(i) the region, R, of experimentation must be specified. In many cases,

the optimal design points will be on the boundary of R1

(ii) the type of model to be fitted has a major effect on the optimal

design. A choice of the most complex type of model to be fitted has,

therefore, to be made. If this is not feasible, the most sensible design is

to take all the design points distinct and covering the region R1 there is

some loss of efficiency if in fact a simple model is adequate;

(iii) the special objectives of the experiment have to be formulated.

Two quite distinct considerations may determine R. Physical constraints

may make it impossible or undesirable to work outside certain ranges; or it

may be thought that the behavior of the observations in certain regions of the
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factor space is of little interest or at least unrepresentative of the

behavior in the main region: of concern. In the former case a fairly clearly

defined region, often rectanglular, is available, but in the second case

definition of R is more difficult. Sometimes, however, one tries to measure

the factors in units such that a spherical R is reasonably suitable. This

suggests three main cases according as R is cuboidal, spherical, and

cylindrical. The first two cases have been extensively studied,

Possible objectives of the experiment are numerous. It may be difficult

to be very specific and several of the objectives may be involved

simultaneously. The main ones are:

(a) the estimation of one or more parameters;

(b) the testing of the adequacy of one or more proposed models, as a

guide to the selection of a model;

(c) the discrimination among alternative models;

(d) the estimation of the detailed form of a complex curve or function;

(e) the estimation of the position of and the response at a maximum (or

minimum);

(f) the estimation of the line of steepest ascent usually from the center

of the design;

(g) the estimation of the properties of the canonical form of the second

degree equationt

(h) the estimation fo the expected response at one or more points.

If the points are inside R, this is a problem of interpolation, whereas if

the points are outside R it is one of extrapolation;

Mi) the estimation of the differences of the responses between given

points. When the points are close together, there is a connection with (f).

-3-
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In addition to the previous three central aspects, there are a number of

further aspects of importance, including

(iv) the possible presence of additional qualitative factors,

(v) the sequential or nonsequential character of the experiment,

(vi) the error structure, for example blocking, two-way control, split-

plot arrangement, etc.;

(vii) the presence of additional constraints, such as the need to have a

small number of levels of certain factors.

3. D-optimal and G-optimal Designs

Let

E (y(x)) f I~) (1) 

where y(x) is an observation at the point x in the design region,

f'(x) - [f (x),...,f Cx)} and 8' = (),.o.,O , the vector of unknown
S1- p - 1 p 2

parameters to be determined by least squares; var{y(x)) = a and

cov{y(xi), YCx)} 0 (i 0 J).

Three types of design are of interest:

(i) discrete designs, n points x ,.. ,x n' giving

n
X - {f(x) ) and XIX { f fx)f(x

- -n i U jlu-1

(ii) design measures, , giving

M( ) " { }mi '

where

m [ f (x)f (x)&(dx ) ,  X being the space of interest;
xe X
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(iii) associated design measures, n , where each point

I

... Ox n has measure or weight n and X'X - nM(Sn).

The well-known equivalence theorem of Kiefer and Wolfowitz (1960) states

the following:

Theorem The following assertions

i) maximizes IM(Ef),

(ii) minimizes

max d(x,6) = f (x)M-1(Of(x),

(iii) max d(x,E ) px

are equivalent.

The first assertion defines D-optimal designs, IM( ) -  being

proportional to the generalized variancesl the second assertation

defines G-optimal designs, the d(.,.) being related to the variance of the

extimated response. For design measures, the two criteria are equivalent,

designs satisfying (ii) being easier to determine because of (iii).

Consider the following example. Let
2 022

E{y(x)) - e0 + 81x + 2x2 + 11x 1 +0 x + xx12x ,

and let the design region be the square with vertices (+1, +1) . Consider

the following three designs. Design I has measure of 0.1458+ at the

vertices, 0.08015 + at the midpoints of the edges, and 0.0962+ at the

origin. Design II consists of 9 points, one at each vertex, midpoint of the

edges and at the origin. Design III consists of 13 points, 2 at each vertex,

one at the midpoint of each edge and one at the origin.

For Design 1, IM,(0)1 - 0.0349, max d(x,&) - 6 1 for Design II,

I0(.) - 0.0098, max d(x, ) - 7.25; for Design 111, IM(t)1- 0.0113,
xF

max d(x,&) - 6.88. Design I is the D-optimal and G-optimal design measure,
x
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but since the measure is irrational the design cannot be performed. Design I

serves as a guide. It can be seen that Design III is better than Design II

and attains values closest to those of the optimal design.

4. Rotatable Designs

From (1), the least squares estimator of 0 is
-. -1

;- (VX) X.Y, (2)

where X - (f(xU )) and Y is the nxl vector of observations. Then, if

y(x) - f'( x)e, -1-

var{y(x)} - fV(x)(X'x)-If(x)2, (3)
2
a being the experimental error variance. Equation (3) will be a function

of the distance of the point from the center of the design, i.e.

var{i(x)) - w(IxU) (4)

if and only if

(X'X) - N'(XX) N, (5)

where N is a particular type of orthogonal matrix; see Box and Hunter

(1957). A design which satisfies (4) or (5)is called a rotatable design.

Thus the variance contours of a rotatable design are spherical and the
A

variance of certain 0i's are constant no matter what orientation of the

design. It the experimenter is not certain in which part of the design region

he will be interested, spherical variance contours appear to be advisable;

see, for example, Box and Hunter (1957). These designs could be considered as

being variance robust.

5. Model Robustness

Box and Draper (1959, 1963) considered designs that minimize the mean

square error over the spherical region of the factor space. They minimized,
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over the spherical region R, the function

0 R

n-Q f var~y(x) dx +-j f [E{y(x)} - n(x)]2 dx,

R Ci R

where y(x) is the least squares estimate of the assumed polynomial model,

n(x) is the true model, 9- - f dx , n is the number of design points and

2 R
a is the experimental error variance. The size of J arises partly from

bias due to the use of a polynomial of too small degree and partly from random

errors. When bias alone is considered, the bias is minimized by rotatable

designs. Draper and Lawrence (1965, 1966) examined the situation when the

region is cuboidal.

Kiefer and Studden (1976) compared designs for situations where the model

is of the form

n iE(y(X ) 1 6 ex

the design region is C-1,1] and the optimal design measure, n' has n

points of support. They discussed optimal n point design measures for

interpolation and extrapolation and compared these to the limiting case

when n + - . It is shown that in some situations it may be better when the

model is of order n to use & where m > n.

6. The Variance of the Difference Between Two Responses

The experimenter may not always be interested in the estimated response

at one point but changes of response, for example, in the difference between

-7-



the estimated responses at two points. Herzberg (1967) considered the

behavior of the variance function of the difference between two estimated

responses. It was shown that for rotatable designs, the variance function of

the difference between two estimated responses is a function only of the

distances of the points from the origin of the design and the angle subtending

them at the origin. Box and Draper (1980) have extended and unified these

results.

7. Measures of Design Robustness

Herzberg and Andrews (1976) introduced robust measures for situations

where outliers, missing values or non-Gaussian distributions are contemplated.

Let a(x) be the probability of losing an observation at the point x

the losses at different points being independent. Let D - {dii}, a

diagonal matrix, where

0 with probability (1(x1 ),

I with probability 1 - a(x

the value 0 being associated with a missing observation. This, of course,

does not explain missing observations, but is only a formulation to

investigate their potential influence on experimental design.

If a sufficient number of observations are missing, not all of the

elements of e given in (1) may be estimated. This occurs when

IXX'DXI - 0 * The probability that this occurs is

pr(IX'DXI 0) (6)

which may be used to compare designs. This measure is called the probability
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of breakdown of the design. Designs robust under this measure have a small

value for (6).

Another measure of robustness is

E( IX'DXI l/P), (7)

which is related to the D-optimality criterion. Designs robust under this

measure have (7) large.

Another measure of robustness and some examples are given in Herzberg and

Andrews (1976). Further examples and computational methods are given in

Andrews and Herzberg (1979). Herzberg and Andrews (1978) compare the

robustness of chain block and coat-of-mail designs.

Box and Draper (1975) introduced a criterion for the construction of

designs to minimize the effect of outliers in the least squares estimate of

the response function. For the comparison of designs, the value of the

population variance of the variances of the estimated response at the design

points is used implying the smaller the value the more robust the design.

8. Robustness Against Autocorrelation in Time

The assumption of

covy(xl), y( 0 i 0 j)

is very often artificial. Bickel and Herzberg (1979) assume that

cov{y(xI), y(x.)} = vij 2

and the variance-covariance matrix of the observations is Va 2, where

V = (v i.. They find one-dimensional optimal designs for particular

situations when the number of observations, n , tends to infinity and V is

unknown but of an assumed form. Examples and further results are given in

Bickel, Herzberg and Schilling (1981).
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9. Conclusion

A review of several optimality criteria for the design of experiments has

been given. Some of these designs possess certain robust qualities. Measures

of robustness of designs are introduced in order that designs may be

compared. It is very important also in this connection to examine the results

of Kiefer (1975) and Galil and Kiefer (1977a,b) where optimal designs relative

to a particular procedure are examined for their performance with respect to

other criteria.
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